Synthesis of 2,4,6-Trisubstituted Chiral Piperidines and (−**)-Dendroprimine by One-Pot Asymmetric Azaelectrocyclization Protocol**

Toyoharu Kobayashi, Futoshi Hasegawa, Katsunori Tanaka, and Shigeo Katsumura*

*School of Science and Technology, Kwansei Gakuin Uni*V*ersity, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan*

katsumura@ksc.kwansei.ac.jp

Received June 8, 2006

ORGANIC LETTERS 2006

Vol. 8, No. 17 ³⁸¹³-**³⁸¹⁶**

ABSTRACT

Stereocontrolled synthesis of 2,4,6-trisubstituted piperidine diastereomers has been realized from common intermediates, obtained by a onepot azaelectrocyclization protocol. Based on the method, the asymmetric synthesis of an indolizidine alkaloid, (−**)-dendroprimine, was achieved.**

The substituted piperidines can be regarded as the core structure of many naturally occurring alkaloids, including indol alkaloids. Furthermore, these functionalized sixmember nitrogen heterocycles have drawn a great deal of attention due to their attractive pharmacological activities. Thus, the stereocontrolled synthesis of piperidines with various substitution patterns is a current topic for many synthetic chemists.¹ When enantiomerically pure piperidines

are easily accessible, which results from the successful introduction of the desired alkyl substituents at the desired positions of the piperidine rings, a novel synthetic strategy for various alkaloids based on the substituted piperidine core synthesis will be envisioned.²

In the preceding paper, we reported a unique one-pot asymmetric 6*π*-azaelectrocyclization, which led to the facile and stereoselective preparation of chiral tetracyclic 2,4 disubstituted 1,2,5,6-tetrahydropyridine intermediates (**A** in Figure 1). In pursuing further the possibility of our one-pot procedure for natural products synthesis,3,4 here we report the stereoselective synthesis of chiral 2,4,6-trisubstituted piperidines (Figure 1). Moreover, the method was applied to the synthesis of an indolizidine alkaloid, $(-)$ -den-

^{(1) (}a) Amat, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. *J. Org. Chem.* **2000**, *65*, 3074. (b) Watson, P. S.; Jiang, B.; Scott, B. *Org. Lett*. **2000**, *2*, 3679. (c) Johnson, T. A.; Curtis, M. D.; Beak, P. *J. Am. Chem. Soc.* **2001**, *123*, 1004. (d) Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. *J. Org. Chem.* **2003**, *68*, 1919. (e) A review of piperidine synthesis was recently reported: Buffat, M. G. P. *Tetrahedron* **2004**, *60*, 1701. (f) Poupon, E.; Francois, D.; Kunesch, N.; Husson, H.-P. *J. Org. Chem.* **2004**, *69*, 3836. (g) Goodenough, K. M.; Moran, W. J.; Raubo, P.; Harrity, P. A. *J. Org. Chem.* **2005**, *70*, 207. (h) Monfray, J.; Gelas-Mialhe, Y.; Gramain, J.-C.; Remuson, R. *Tetrahedron: Asymmetry* **2005**, *16*, 1025. (i) Dobbs, A. P.; Guesne, S. J. *Synlett* **2005**, *18*, 2101. (j) Passarella, D.; Barilli, A.; Belinghieri, F.; Fassi, P.; Riva, S.; Sacchetti, A.; Silvani, A.; Danieli, B. *Tetrahedron: Asymmetry* **2005**, *16*, 2225. (k) Gebauer, J.; Blechert, S. *Synlett* **2005**, *18*, 2826. (l) Wung, R. P.; Fu, G. C. S. *J. Am. Chem. Soc*. **2005**, *127*, 12234. (m) Sales, M.; Charette, A. B. *Org. Lett*. **2005**, *7*, 5773.

⁽²⁾ For example: (a) Hirai, Y.; Terada, T.; Okaji, Y.; Yamazaki, T.; Momose, T. *Tetrahedron Lett*. **1990**, *33*, 4775. (b) Amat, M.; Perez, M.; Llor, N.; Escolano, C.; Luque, F. F.; Molins, E.; Bosch, J. *J. Org. Chem.* **2004**, *69*, 8681.

^{(3) (}a) Tanaka, K.; Katsumura, S. *J. Am. Chem. Soc.* **2002**, *124*, 9660. (b) Tanaka, K.; Kobayashi, T.; Mori, H.; Katsumura, S. *J. Org. Chem*. **2004**, *69*, 5906. (c) Kobayashi, T.; Nakashima, M.; Hakogi, T.; Tanaka, K.; Katsumura, S. *Org. Lett.* **2006**, *8*, 3809.

Figure 1. Synthetic strategy for chiral 2,4,6-trisubstituted piperidines and $(-)$ -dendroprimie by one-pot azaelectrocyclization.

droprimine,⁵ a simple but challenging molecule for the stereoselective construction of three stereogenic centers on a small piperidine skeleton.

To realize a 2,4,6-trisubstituted piperidine synthesis, we first attempted the stereoselective reduction of the conjugated $C=C$ double bond in common intermediate A , which can be readily prepared by the one-pot azaelectrocyclization protocol (Figure 1). The optimization of the conditions was performed using $(-)$ -2a, obtained from amine $(-)$ -a, iodide **1**, and stannane **2** in 84% yield with 40:1 stereoselectivity (Scheme 1).

When $(-)$ -2a was treated with magnesium in methanol, C-4 α -isomer 4 was stereoselectively produced at a ratio of 5:1.⁶ On the other hand, the catalytic hydrogenation of $(-)$ -**2a** with Raney nickel provided single C-4 *â*-ester **7**, a stereoisomer obtained by a metal-dissolving reduction.

Therefore, the two diastereomeric piperidines, **4** and **7**, were easily accessible by choosing the reducing reagent.

Methylation was then attempted on the aminoacetal moiety of hydroxymethyl derivative **5** and the corresponding benzyl derivatives **6** and **9**, which were prepared, respectively, from piperidines **4** and **7**, as shown in Scheme 1. After several trials on C-4 α -hydroxymethyl derivative **5** (Table 1), C-6

Table 1. Stereoselective Synthesis of $(2\beta, 4\alpha, 6\alpha)$ -Trisubstituted Piperidine

	OН Stereoslective Me Alkylation HO. .OH Et ₂ O 0° C - rt 10 5	Pb(OAc) ₄ (3.0 equiv) CHC ₃ $-50 °C. 1 h$ 64%	Мe NOE HN
			α/β^c
entry	alkylating agent	vield	$(C-6$ position)
1	MeLi (excess)		
2	MeLi (excess), BF_3-Et_2O (3 equiv)		
3	MeLi (excess), $MgBr2$ (3 equiv)		
4	MeMgI(25 equiv)	58% ^{<i>a</i>}	40:1
5	MeMgI (20 equiv), CuI (20 equiv)	81% ^a	50:1
6	Me_3Al^d (15 equiv)	88%	2:1
7	$Me2Zne$ (15 equiv)		

a Isolated yields of α-isomer. *b* Yield for mixture of isomers. *c* Determined by 1H NMR analysis of crude mixtures. *^d* Reaction was carried out in toluene. *^e* Reaction was performed in DMF.

 α -methyl derivative 10 was exclusively obtained in 81% yield when **5** was treated with methylmagnesium iodide (20 equiv) and CuI (20 equiv) in ether⁷ (Table 1, entry 5). The high stereoselectivity of methylation on **5** can be explained by assuming that the coordination of the Grignard reagent with the C-4 hydroxymethyl group of the intermediary iminium ion was generated during the alkylation process. Then the removal of the hydroxy indane moiety of methylated compound **10** was achieved by treatment with lead tetraacetate at -50 °C in chloroform to produce $(2\beta, 4\alpha, 6\alpha)$ -

(6) In this reaction, the β -isomer was converted into the corresponding methyl ester.

(7) Reduction and alkylation of aminoacetal, see: (a) Yamato, M.; Hashigaki, K.; Ishikawa, S.; Qais, N. *Tetrahedron Lett*. **1988**, *29*, 6949. (b) Higashiyama, K.; Inoue, H.; Takahashi, H. *Tetrahedron Lett*. **1992**, *33*, 235. (c) Higashiyama, K.; Inoue, H.; Takahashi, H. *Tetrahedron* **1994**, *50*, 1083. (d) Higashiyama, K.; Nakahata, K.; Takahashi, H. *J. Chem. Soc., Perkin Trans. 1* **1994**, 351. (e) Higashiyama, K.; Kyo, H.; Takahashi, H. *Synlett* **¹⁹⁹⁸**, 489. (f) Husson, H.-P.; Royer, J. *Chem. Soc. Re*V*.* **¹⁹⁹⁹**, *²⁸*, 383.

⁽⁴⁾ Concurrent with our work, Hsung et al. have also succeeded in the highly stereoselective asymmetric azaelectrocyclization of conformationally restricted 1-azatrienes under thermodynamically equilibrated conditions. They also applied this reaction toward alkaloid synthesis, see: (a) Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.; Douglas, C. J.; McLaughlin, M. J.; Mulder, J. A.; Yao, L. J. *Org. Lett*. **1999**, *1*, 509. (b) Sklenicka, H. M.; Hsung, R. P.; Wei, L.-L.; McLaughlin, M. J.; Gerasyuto, A. I.; Degen, S. J. *Org. Lett*. **2000**, *2*, 1161. (c) Sklenicka, H. M.; Hsung, R. P.; McLaughlin, M. J.; Wei, L.-L.; Gerasyuto, A. I.; Brennessel, W. B. *J. Am. Chem. Soc.* **2002**, *124*, 10435. (d) McLaughlin, M. J.; Hsung, R. P.; Cole, K. P.; Hahn, J. M.; Wang, J. *Org. Lett*. **2002**, *4*, 2017. (e) Luo, S.; Zificsak, C. A.; Hsung, R. P. *Org. Lett*. **2003**, *5*, 4709. (f) Sydorenko, N.; Hsung, R. P.; Darwish, O. S.; Hahn, J. M.; Liu, J. *J. Org. Chem.* **2004**, *69*, 6732.

^{(5) (}a) Luning, B.; Leander, K. *Acta Chem. Scand.* **1965**, *19*, 1607. (b) Luning, B.; Lundin, C. *Acta Chem. Scand.* **1967**, *21*, 2136. (c) Blomquist, L.; Leander, K.; Luning, B.; Rosenblom, J. *Acta Chem. Scand*. **1972**, *26*, 3203.

trisubstituted piperidine **11**, of which relative configurations were determined based on NOE.

On the other hand, the methylation of the corresponding benzylated compound **6** proceeded from the opposite site of the C-4 benzyloxymethyl group of piperidine (Table 2).

Table 2. Stereoselective Synthesis of $(2\beta, 4\alpha, 6\beta)$ -Trisubstituted Piperidine

	OH. Stereoslective Me Alkylation 4 .OBn .OBn Et ₂ O 0° C - rt 12 6	Pb(OAc) ₄ (3.0 equiv) CHCI₂ -50 °C. 1 h 72%	NOE Me .OBn 13
			α/β^k
entry	alkylating agent	vield ^a	$(C-6$ position)
1	MeLi (excess)		
2	M e M gI $(3$ equiv $)$	84%	1:3
3	MeMgI (3 equiv), CuI (3 equiv)	79%	1:2
4	$Me3Al$ (5 equiv)	82%	1:5

^a Yield for mixture of isomers. *^b* Determined by 1H NMR analysis of the crude mixtures.

Although no methylated product could be detected by reaction with MeLi (Table 2, entry 1), treatment with MeMgI selectively provided C-6 β -methyl isomer 12 in a ratio of 3:1 (Table 2, entry 2). The CuI additive did not increase stereoselectivity (Table 2, entry 3). Similarly, the treatment of **6** with Me3Al in ether provided the same isomer **12** with the highest selectivity of 5:1 (Table 2, entry 4). Apparently, the steric factor of the benzyl protecting group overrides the coordination of alkylation. For the synthesis of 2,4,6 trisubstituted piperidine, the hydroxy indane moiety of **12** was removed by lead tetraacetate to provide $(2\beta, 4\alpha, 6\beta)$ diastereomer **13** in 72% yield.

Additionally, the reaction of C-4 *â*-benzyloxymethyl derivative **9** with MeMgI stereoselectively provided C-6 α -methyl isomer 14 in a ratio of 10:1 (Scheme 2), in

accordance with the same reasons in the case of **6** (Table 2). A $(2\beta, 4\beta, 6\alpha)$ -piperidine isomer **15** was also obtained by oxidative treatment of **14** with lead acetate in 58% yield.

After being established as an efficient route to three diastereomeric 2,4,6-trisubstituted piperidines, a synthetically unique route to $(-)$ -dendroprimine has now been envisioned (Schemes 3 and 4). $5,8$

Based on the one-pot electrocyclization protocol, three components, vinyl iodide **1**, linear vinylstannane **3**, and aminoindanol $(-)$ -**a** were mixed in DMF and heated to 80

 $\rm{^{\circ}C}$ in the presence of a Pd₂(dba)₃/TFP catalyst (Scheme 3). As expected, the desired tetracyclic piperidine $(-)$ -3a was produced in 78% yield with a 20:1 selectivity at the C-2 position of the piperidine.

Following the procedure established in Scheme 1, the dissolving metal reduction of the conjugated ester in $(-)$ -3a selectively provided C-4 α -isomer **16** at a ratio of 4:1. The relative stereochemistry of major isomer **16** was unambiguously determined using X-ray crystallographic analysis

^{(8) (}a) Diederich, M.; Nubbemeyer, U. *Synthesis* **1999**, *2*, 286. (b) Hsu, R.-T.; Cheng, L.-M.; Chang, N.-C.; Tai, H.-M. *J. Org. Chem.* **2002**, *67*, 5044. (c) Bollena, A. D. S.; Gelas-Mialhe, Y.; Gramain, J.-C.; Perret, A.; Remuson, R. *J. Nat. Prod.* **2004**, *67*, 1029.

(Figure 2). Reduction of the ester group with Red-Al, followed by catalytic hydrogenation using $PtO₂$, provided primary alcohol **17** in 87% yield for the two steps.

Figure 2. OPTEP diagram of compound **16** obtained by X-ray analysis.

Unexpectedly, MeMgI and CuI treatment on aminoacetal **17** under the established conditions in Table 1 gave rise to a 3:1 mixture of diastereomers at the C-6 position. Obviously, the steric size of the substituents at the 2-position of the piperidine ring influenced the stereoselectivity of the methylation (compare **5** and **17** in Table 1 and Scheme 3). The removal of the hydroxy indane moiety in **18** was achieved by catalytic hydrogenation in the presence of palladium hydroxide, and the resulting piperidine nitrogen was protected as Cbz in 80% yield for two steps.

From 19, the synthesis of $(-)$ -dendroprimine was realized by the sequences of reactions shown in Scheme 4. Thus, the hydroxymethyl group of **19** was converted into the methyl group in 72% yield by treatment with CBr_4/PPh_3 , followed by the NaBH₄ reduction in DMSO.⁹ The terminal TBS ether group was converted into methyl ester by a sequence of TBS deprotection, Jones oxidation, and methylation.¹⁰ The deprotection of Cbz, followed by heating the resulting amine solution in toluene, caused smooth cyclization that led to the corresponding lactame derivative **22**. ¹¹ Finally, the reduction of the lactam amide group of 22 by LiAlH₄ under ether reflux conditions provided $(-)$ -dendroprimine. The spectral data (¹H and ¹³C NMR) were in good agreement with those published in the literature.^{5,8c}

In summary, we achieved chiral 2,4,6-trisubstituted piperidine synthesis using a unique one-pot procedure of highly stereoselective asymmetric azaelectrocyclization. The method was applied to the synthesis of a natural indolidizine alkaloid, $(-)$ -dendroprimine. Although generality in the stereoselective substitution on the piperidines still remains to be improved, such as on **17**, our one-pot asymmetric 6*π*-azaelectrocyclization can be regarded as a powerful strategy for alkaloid synthesis, that is, polysubstituted chiral piperidine synthesis. Further applications are currently in progress in our laboratory.

Acknowledgment. We thank Professor Yasufumi Ohfune at the Osaka City University for his kind support to highresolution mass spectra measurements. This work was financially supported by a Grant-in-Aid for Science Research on Priority Areas 16073222 from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and JSPS (Research Fellowship for T.K.).

Supporting Information Available: Experimental details and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0614065

(11) Herradon, B.; Sanchez-Sancho, F. *Tetrahedron: Asymmetry*, **1998**, *9*, 1951.

⁽⁹⁾ Hutchins, R. O.; Kandasamy, D.; Dux, F., III; Maryanoff, C. A.; Rotstein, D.; Goldsmith, B.; Burgoyne, W.; Cistone, F.; Dalessandro, J.; Puglis, J. *J. Org. Chem.* **1978**, *43*, 2259.

⁽¹⁰⁾ First, under several conditions we attempted direct cyclization from the corresponding bromide or tosylate derived from **20** by removing a TBS group, bromination or tosylation, and deprotection of Cbz, but we could not obtain a $(-)$ -dendroprime.